Recommendations on Medical Management of Childhood Lead Exposure and Poisoning

No level of lead in the blood is safe. In 2012, the CDC established a new “reference value” for blood lead levels (5 mcg/dL), thereby lowering the level at which evaluation and intervention are recommended (CDC).

<table>
<thead>
<tr>
<th>Lead level</th>
<th>Recommendation</th>
</tr>
</thead>
</table>
| < 5 mcg/dL | 1. Review lab results with family. For reference, the geometric mean blood lead level for children 1-5 years old is less than 2 mcg/dL.
2. Repeat the blood lead level in 6-12 months if the child is at high risk or risk changes during the timeframe. Ensure levels are done at 1 and 2 years of age.
3. For children screened at age < 12 months, consider retesting in 3-6 months as lead exposure may increase as mobility increases.
4. Perform routine health maintenance including assessment of nutrition, physical and mental development, as well as iron deficiency risk factors.
5. Provide anticipatory guidance on common sources of environmental lead exposure: paint in homes built prior to 1978, soil near roadways or other sources of lead, take-home exposures related to adult occupations, imported spices, cosmetics, folk remedies, and cookware. |
| 5-14 mcg/dL | 1. Perform steps as described above for levels < 5 mcg/dL.
2. Re-test venous blood lead level within 1-3 months to ensure the lead level is not rising. If it is stable or decreasing, retest the blood lead level in 3 months. Refer patient to local health authorities if such resources are available. Most states require elevated blood lead levels be reported to the state health department. Contact the CDC at 800-CDC-INFO (800-232-4636) or the National Lead Information Center at 800-424-LEAD (5323) for resources regarding lead poisoning prevention and local childhood lead poisoning prevention programs.
3. Take a careful environmental history to identify potential sources of exposures (see #5 above) and provide preliminary advice about reducing/eliminating exposures. Take care to consider other children who may be exposed.
4. Provide nutritional counseling related to calcium and iron. In addition, recommend having a fruit at every meal as iron absorption quadruples when taken with Vitamin C-containing foods. Encourage the consumption of iron-enriched foods (e.g., cereals, meats). Some children may be eligible for Special Supplemental Nutrition Program for Women, Infants and Child (WIC) or other nutritional counseling.
5. Ensure iron sufficiency with adequate laboratory testing (CBC, Ferritin, CRP) and treatment per AAP guidelines. Consider starting a multivitamin with iron.
6. Perform structured developmental screening evaluations at child health maintenance visits, as lead’s effect on development may manifest over years. |
| 15-44 mcg/dL | 1. Perform steps as described above for levels 5-14 mcg/dL.
2. Confirm the blood lead level with repeat venous sample within 1 to 4 weeks.
3. Additional, specific evaluation of the child, such as abdominal x-ray should be considered based on the environmental investigation and history (e.g., pica for paint chips, mouthing behaviors). Gut decontamination may be considered if leaded foreign bodies are visualized on x-ray. Any treatment for blood lead levels in this range should be done in consultation with an expert. Contact local PEHSU or PCC for guidance; see resources on back for contact information. |
| >44 mcg/dL | 1. Follow guidance for BLL 15-44 mcg/dL as listed above.
2. Confirm the blood lead level with repeat venous lead level within 48 hours.
3. Consider hospitalization and/or chelation therapy (managed with the assistance of an experienced provider). Safety of the home with respect to lead hazards, isolation of the lead source, family social situation, and chronicity of the exposure are factors that may influence management. Contact your regional PEHSU or PCC for assistance; see resources on back for contact information. |
Principles of Lead Exposure in Children

- A child’s blood lead concentration depends on their environment, habits, and nutritional status. Each of these can influence lead absorption. Children with differing habits or nutritional status but who live in the same environment can vary on blood lead concentration. Further, as children age or change residences, habits or environments change creating or reducing lead exposure potential.
- While clinically evident effects such as anemia, abdominal pain, nephropathy, and encephalopathy are seen at levels >40 µg/dL, even levels below 10 µg/dL are associated with subclinical effects such inattention and hyperactivity, and decreased cognitive function. Levels above 100 µg/dL may result in fatal cerebral edema.
- Lead exposure can be viewed as a lifelong exposure, even after blood lead levels decline. Bone acts as a reservoir for lead over an individual’s lifetime. Childhood lead exposure has potential consequences for adult health and is linked to hypertension, renal insufficiency, and increased cardiovascular-related mortality.
- Since lead shares common absorptive mechanisms with iron, calcium, and zinc, nutritional deficiencies in these minerals promotes lead absorption. Acting synergistically with lead, deficiencies in these minerals can also worsen lead-related neurotoxicity.

Principles of Lead Screening

- Lead screening is typically performed with a capillary specimen obtained by a finger prick with blood blotted onto a testing paper. Testing in this manner requires that the skin surface be clean; false positives are common. Therefore, elevated capillary blood lead levels should be followed by venipuncture testing to confirm the blood lead level. In cases where the capillary specimen demonstrates an elevated lead level but the follow-up venipuncture does not, it is important to recognize that the child may live in a lead-contaminated environment that resulted in contamination of the finger tip. Efforts should be made to identify and eliminate the source of lead in these cases. Where feasible, lead screening should be performed by venipuncture.

Principles of Iron Deficiency Screening

- The iron deficiency state enhances absorption of ingested lead.
- Hemoglobin is a lagging indicator of iron deficiency and only 40% of children with anemia are iron deficient.
- Lead exposed children (≥ 5 mcg/dL) are at risk for iron deficiency and should be screened using CBC, Ferritin, and CRP. Alternatively, reticulocyte hemoglobin can be used, if available.
- Children with iron deficiency, with or without anemia, should be treated with iron supplementation.

Resources

<table>
<thead>
<tr>
<th>Resource</th>
<th>Website</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pediatric Environmental Health Specialty Unit (PEHSU)Network</td>
<td>www.pehsu.net or 888-347-2632</td>
<td></td>
</tr>
<tr>
<td>Poison Control Center (PCC)</td>
<td>www.aapcc.org/ or 800-222-1222</td>
<td></td>
</tr>
<tr>
<td>Centers for Disease Control and Prevention</td>
<td>www.cdc.gov/nceh/lead/ or 800-232-4636</td>
<td></td>
</tr>
<tr>
<td>U.S. Environmental Protection Agency</td>
<td>www.epa.gov/lead/ or 800-424-5323</td>
<td></td>
</tr>
</tbody>
</table>

Suggested Reading and References:

- CDC Response to Advisory Committee on Childhood Lead Poisoning Prevention Recommendations in “Low Level Lead Exposure Harms Children: A Renewed Call of Primary Prevention” June 7, 2012

This document was supported by the Association of Occupational and Environmental Clinics (AOEC) and funded (in part) by the cooperative agreement award number U61TS000118-04 from the Agency for Toxic Substances and Disease Registry (ATSDR).

Acknowledgement: The U.S. Environmental Protection Agency (EPA) supports the PEHSU by providing funds to ATSDR under Inter-Agency Agreement number DW-75-92301301-0. Neither EPA nor ATSDR endorse the purchase of any commercial products or services mentioned in PEHSU publications.

(April 2013 version)